Boron Nitride (BN)

Boron Nitride is an advanced synthetic ceramic material available in solid and powder form. Its unique properties – from high heat capacity and outstanding thermal conductivity to easy machinability, lubricity, low dielectric constant, and superior dielectric strength – make boron nitride a truly outstanding material.

In its solid form, boron nitride is often referred to as “white graphite” because it has a microstructure similar to that of graphite. However, unlike graphite, boron nitride is an excellent electrical insulator that has a higher oxidation temperature. It offers high thermal conductivity and good thermal shock resistance and can be easily machined to close tolerances in virtually any shape. After machining, it is ready for use without additional heat treating or firing operations.

Material Advantages

To make solid shapes, hexagonal Boron Nitride (hBN) powders and binders are hot-pressed into billets up to 490mm x 490mm x 410mm at pressures up to 2000 psi and temperatures up to 2000°C. This process forms a material that is dense and easily machined and ready to use. It is available in virtually any custom shape that can be machined and has unique characteristics and physical properties which make it valuable for solving tough problems in a wide range of industrial applications.

  • Excellent thermal shock resistance
  • High electrical resistivity – excluding aerosols, paints, and ZSBN grade
  • Low density
  • High thermal conductivity
  • Anisotropic (thermal conductance differs between parallel and perpendicular planes to pressing direction)
  • Corrosion resistant
  • Good chemical inertness
  • High temperature material
  • Non-wetting
  • High dielectric breakdown strength, >40 KV/mm
  • Low dielectric constant, k=4
  • Excellent machinability


  • Break rings for continuous casting of metals
  • Crucibles and containers for high purity molten metals and glasses
  • Deck plates
  • Heat treatment fixtures
  • High temperature lubricants
  • High temperature valves
  • High temperature and high voltage electrical insulators
  • Induction heating coil supports
  • Laser Nozzles
  • Mold release agents
  • Molten metal and glass castings
  • Nozzles for transfer or atomization
  • Nuclear Shielding
  • Radar components and antenna windows
  • Refractory applications
  • Spacers
  • Vacuum furnace supports which require electrical resistivity
  • Setter plates for high temperature furnaces
  • Electrical insulators for high temperatures and high voltages
  • Vacuum feedthroughs
  • Plasma chamber lining and fittings
  • Nozzles for non-ferrous metals and alloys
  • Thermocouple protection tubes and sheaths
  • Laser supports

Material Properties